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Foreward

This report is Chapter VIII of the twelve in a forthcoming research

monograph on the mathematical theory of laminar combustion. Chapters I-IV

originally appeared as Technical Reports Nos. 77, 80, 82 & 85; these were

later extensively revised and then issued as Technical Summary Reports

No's 1803, 1818, 1819 & 1888 of the Mathematics Research Center,

University of Wisconsin-Madison. References to I-IV mean the MRC reports.
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Chapter VIII

Three-Dimensional Flames

1. The Flame as a Hydrodynamic Discontinuity.

The plane premixed flame discussed in Chapters II & III is an idealization

seldom approximated, since in practice the flame is usually curved. A bunsen

flame is quite unavoidably so, but even under circumstances carefully chosen

to nurture a plane state, instabilities can lead to a three-dimensional structure.

Such flames have been extensively studied (arkstein 1964, p. 7) using what may

be called a hydrodynamical approach, a brief description of which will provide

an appropriate introduction to our subject.

On a scale that is large compared to its nominal thickness X/c pM, the

flame is simply a sheet across which there is a jump in temperature and density

subject to Charles' Law, as is appropriate for an isobaric process. Deforratic:;

of the sheet from a plane is associated with pressure variations, of the order

of the square of the Mach numbers (cf. Sec. 1.5), in the hydrodynamic fields.

These small pressures jump across the sheet in order to conserve normal momntn

flux. Because Euler's equation for small Mach number hold outside the flame

(cf. end of Sec. 3), the temperature and density do not change along particle

paths; so that for a flame travelling into a uniform gas the temperature and

density ahead are constant and the flow is irrotational. The flow behind is

stratified, however, since flame curvature generates both vorticiy and non-

uniform temperature jumps. Nevertheless variations in temperature from the

adiabatic flame temperature are usually neglected everywhere, a matter to

which we shall return later. On the other hand, vorticity generation cannot
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be ignored so that, although Euler's equations hold behind the flame, the

flow is not potential there.

The flow fields on the two sides of the flame are coupled by conservation

of mass and momentum fluxes through the sheet. Indeed, if V is the speed of

the discontinuity back along its normal n (Fig. 1) we have

(1,2,3) p1(vnl + V) = P2(vn2 + V), i = Y2' Pl + Pl(Vnl + V)2 = p2 + P2 (Vn2+V)
2

where vn = y*n and Y = y - vnz. The flame speed is defined to be the

normal gas speed immediately ahead, as measured in a local frame fixed at the

discontinuity, i.e. v n + V. If this is specified the hydrodynamic problem

can in principle be solved and the locus of the flame determined. [Equations

(1), (2), (3) become four scalar equations for v2,P2  once p2  is known,

and that follows from the flame temperature T

Evaluation of the flame speed from a combustion analysis of the sheet

has often been sidestepped, and replaced by one of several hypotheses. The

simplest is that the speed is constant. In this way Landau (1944) considered

infinitesimal disturbances of a plane flame and concluded it is always unstable,

a result that will be examined in Ch. XI.

The already nonlinear flow field is only complicated by the combustion,

even for a constant-speed flame. Accordingly an additional simplication,

often adopted, is that the flow is not affected by the flame. This can be

Justified only when the heat released by the combustion is small compared

to the thermal energy of the fresh mixture (Sec. 1.5), so that the temperature

Jump across the sheet is negligible. Such is not a common characteristic of

actual flames, but the approach can provide insight into their qualitative

nature.
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Consider, for example, a stationary flame located in the shear flow of

Fig. 2, representative of that from a bunsen tube. Since v is equal to then

flame speed, assumed constant, the angle c decreases as u increases and

there is a cusp on the centerline. The resulting flame shape has some resemblance

to that of the inner cone of a bunsen flame. (Even for a parabolic velocity

distribution, a good approximation to the flow from the tube when that is unaffected

by the combustion, the shape of the flame can only be obtained numerically.)

In practice the tip is usually rounded so that the flame speed at the

centerline is equal to v and must have a smaller value elsewhere. (Amax

detailed study of flame tips is presented in Ch. IX.) Observations of this

nature and dissatisfaction with the stability prediction of Landau have

encouraged more sophisticated hypotheses, in particular that of Markstein

discussed at the end of Sec. 111.6. We shall not pursue these here since

rational analysis of the burning zone (which is embedded within the hydro-

dynamic discintinuity) determines the actual flame speed from first principles.

2. Slow Variation and Near Equidiffusion.

As discussed in Sec. 11.7, the combustion of a two-component mixture that

is well removed from stoichiometry can be characterized by a single mass

fraction Y related to the component which is consumed at the sheet. To be

sure, the argument was given for plane flames, equal molecular masses, and

unit Lewis nuibers and stoichiometric coefficients; but all these restrictions

1 are readily seen to be inessential (as also is the number of components). The

single Lewis number is then properly interpreted as that of the deficient

Component - oxidant in a rich flame, fuel for a lean one.



Appropriate equations for our discussion of three-dimensional unsteady

motion are therefore

(4,5) pT = 1, ap/at +V -(p) = 0,

(6) p(ay/at + v" v Y) _ -l Y =Q,

.(7) p(ay/at + vy)= -p + [v2 y +v(V'v)/3],

(8) p(8T/at + v'VT) -V2T =

where

(9) sl = AYe -B T

These have been rendered dimensionless as in Sec. 1.6 and the undisturbed

pressure has been taken constant (i.e. pc = 1), with p the variations from it.

On the length scale X/c pM now being used the flame is no longer a

sheet but, for large activation energy, the reaction zone within it can be

considered so. We now take the x-axis instantaneously parallel to the normal

to this sheet (and therefore to the hydrodynamic discontinuity) at the point

of interest and introduce the new variable

(10) n = x - (t),

as was done in the discussion of plane deflagration waves in Sec. 111.3. As

usual x, denotes the position of the sheet. Everywhere in the above

equations a/at and 9/ax should now be replaced by

(ii) 3/Vt - if/3n and a/an,

respectively.
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In analysing the resulting equations for the limit 0-'c some thought

must be given to the flame temperature, i.e. the temperature immediately

behind the sheet. It is clear from the results of Chs. II & III (cf. Sec. 11I.1)

that there must be a general correlation between this temperature and the

flame speed in the sense that 0(1/6) changes in the former are associated

with 0(i) changes in the latter. We may therefore expect that if the flame

temperature varies by larger amounts, either temporally or spatially, then

the flame will vary in an extreme fashion through large acceleration or

curvature; and such behavior will introduce serious difficulties into the

analysis. Only in the discussion of explosions in Ch. XII will these

difficulties be confronted, and then only in relatively simple circumstances.

Here, as in Ch. III, we shall restrict ourselves to physical situations where

the temperature of the burnt mixture in the neighborhood of the flame is

everywhere, and at all times, within o(i/e) of the adiabatic flame

temperature. Necessary restrictions are established by the following argument

(Buckmaster 1979a).

As in Sec. 111.3, we can calculate the flame temperature from the overall

change in partial enthalpy H = Y + T in the flame up to and including

the reaction zone. Thus equations (6) and (8), with the modifications (11),

are added to eliminate the reaction terms and then integrated from n = -w

to 0+ to obtain

(12) I 0 ([ + j)a + VITT dn = DT 0+2 l-Y + T) dn,
OD at n - n -I ;X nO+ +  .-n,

where as before the subscript j denotes the component perpendicular to n,

i.e. in the flame sheet, and we have used the fact that Y vanishes behind

the sheet. The middle term on the left-hand side can be integrated by parts

to yield
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0+ 0+
PH(v - H P (v - )dn,

in which

an( V- :k.)1 -- -V (PV ), p(v -( [LP- += ( 0+an

according to the equation of continuity (5). Equation (12) may therefore be

rewritten

(13) p (v -4) (T* H 10+ 1 2I1= + T) +T +

+ -(H) • 2

where, as usual, T, denotes the temperature at the flame sheet.

By assumption the left-hand side of equation (13) is at most O(1/6)

so that the right side must be similarly bounded. The only way to guarantee

this within a general framework is to make the terms in V, and 3/3t

separately small, which has been accomplished in two ways. We confine

attention to disturbances which vary over times and distances of order e

Such slowly varying flames are a generalization of those introduced in

Sec. 111.5. Alternatively, we restrict the Lewis number to values close to

one, i.e. write

(14) _. 1 =1- X/e with X = 0(i),

f insist that the state 1 does not vary along the flame and impose the integral

(15) H = + 0(1/6)

which is then a possibility. Such near-equidiffusional flames are a generalization

of those introduced in Sec. III.8.
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The full generality of the above analysis has not appeared elsewhere

although its essence, for shear flows, is contained in Buckmaster (1979.a).

The rest of the chapter is concerned with the detailed formulation of each

of these two kinds of flame.

3. The Basic Equation of Slowly Varying Flames.

Slowly varying flames can be characterized by the scaling

(16) (y,z,t) =

but it should be recognized from the outset that the actual lengths involved

are quite moderate. In Sec. II.A we saw that the preheat zone typically has

a thickness of less than 0.1 mm. So that, even for 0 as large as 100,

appreciable changes occur in less than 1 cm.

Flame-sheet disturbances on the e-scale will be associated with field

disturbances at distances n = O(e), where the'governing equations are

fundamcntally different from those where n = 0(1). The limit 0 -

therefore generates a structure with at least three zones: the flame sheet

described on the scale n = 0(1/0), to which all the reaction is confined;

a diffusion zone described on a scale n = 0(l), called a preheat zone in

front of the flame; and an ideal-fluid region described on the scale n 0(e).

Description of the latter is the hydrodynamic problem discussed in Sec. 1.

The stratification behind the flame which is an essential feature of this

description must eventually be smoothed out by diffusion, so that additional

structure is described in a scale much larger than n= 0(0); but that will

not be considered.
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Anticipation of the matching conditions imposed by the ideal-fluid

region enables the diffusion zone to be analyzed. These conditions are

(17) n - +o: (p,T,Y,v,p) (p%,T 1 ,Y1 ,1 ,Ylp;

(18) n -* : exponential growth not permitted.

The state 1 is that immediately ahead of the hydrodynamic discontinuity, and

is to be considered a known function of n,C,T. Our aim is the same as that

in Sec. 111.5, namely to calculate various quantities in the overall enthalpy

balance (13) and hence derive an expression, in terms of the state 1, for the

perturbation of the flame temperature. (The change of units introduced in

Sec. 111.3 is not appropriate here since pl, which replaces p_. there,

is in general variable; hence the differences in someof the subsequent formulas.)

To leading order the governing equations become

(19, 20) pT = 1, D[p(V + vn )]/Dn = 0,

(21) p(V + v n)Y/n -9-l1 D2y/9n2 = -Q

(22, 23) p(V + Vn)v n/3n = -Dp/an + (4f/3) a2vn/an 2 p(V+Vn) /;n =Va 2 /an

(24) p(V + vn)a T / an - a 2 T/ an2 =

where -x has now been identified with V, the speed of the hydrodynamic

discontinuity. Apart from notation, equations (19), (20), (21) and (24)

are identical to those for a plane flame so that we may immediately write

(cf. Sec. 111.5)

(25) p(V + v) : Pl(V + V) M (say),
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Mn M n Mn -i
(26) Y = Y( - e ), T =T I + Y~e n , P = (TI + Yle n ) for n < 0,

(27) 0, T =H + a-lt (,'T),p =li for n > 0.

- -The mass flux Mn may also be called the burning rate. Expressions for vn n
and p can also be written, but we shall not need them. On the other hand, v

is now needed; since it does not jump across the hydrodynamic discontinuity, it

can be expected to stay constant over the whole range of n:

Formal proof comes from equation (23), which holds even in the flame sheet

and possesses only constant vectors as bounded solutions.

The perturbation t in the flame temperature may now be calculated

from the enthalpy balance (3.3) since all other quantities have been

determined, in terms of V, to sufficient accutacy. The result is quite

complicated, involving ters in /DT and V of P1T1,Y and vI"

Considerable simpliciation occurs when the upstream temperature and composition

of the mixture (on the hydrodynamic scale) are uniform, since then pI, T]

and Y1 are constant, as we shall see at the end of this section. Only

the simpler result will be written here.

The 0( - 1 ) terms in the integrand (13) are now

3[(*- H)] + V,[pv1 CT* - H))

Y1( - e n
-(t +v V M 1-a

n LI9 nj M n M nTI + Y1e n

which may be replaced by
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IMnn
le n

+ 1e n{- n (M n + Vy,*V1 M n]l + Yl M~i Mnn

under integration by parts. Here the dot denotes differentiation with respect

to T and Vj_ is the gradient operator with respect to n, C • For i= 0

the calculation is the same as for a plane flame, so that it is not surprising

to find the generalization

(29) t = -bM- 3  [ + yjlV M - MVY where b = Y don n ..I-n n~.L. 1l0 T +Y G

of the result (111.39) from the integration (13). (A factor T is now

missing from b because of the different unit for p1  in M and the use

of 1/e as expansion parameter.)

Another relation between the burning rate M and the perturbation t
n

of the flame temperature follows from the structure of the flame sheet,

which is described on the scale n = 0(1/0). The analysis is the same as in

Ch. 3 since, to leading order, the equations for p, Y and T are those for

a plane flame. We conclude that

(30) Mn = e with T, = His

cf. equation (111.26), if the mass flux M on which units have been based

is chosen to be the burning rate of a plane flame moving into the state

YI' TI' i.e.

(31) M = 1 T. exp(-e/2T,)fYle,

cf. equation (III.16). The two results (29), (30) now give us the basic

equation
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(32) b[11 + M - '?.T)+2M3 £fl M =0

of slowly varying flames, which should be compared with its plane from (IIi.40).

The equation is due to Buckmaster (1977), whose derivation has been simplified.

Restricted forms of it have been given by Sivashinsky(1974, 1975) and, in a

linearized context, by Eckhaus (1961). Interpretation involves the concept

of flame stretch to be introduced in the next section. We shall finish the

present section with a brief discussion of the ideal-fluid region where n =C(z).

To the slow variables n,C,T we now add

(33) = x/O.

Then p(= l/T), T and Y are found to be constant on particle lines, to

leading order, while the velocity and pressure fields satisfy

(34) v = , p(Dy/DT + v .Vy) 7p-

where V is now the gradient operator with respect to , These are

Euler's equations for an incompressible (but not necessarily constant-density)

ideal fluid, i.e. one devoid of viscosity and heat conduction. Particles

retain the values pl,T1 and Y1 they acquire far upstream until they

reach the hydrodynamic discontinuity, where they exchange them for the values

(35) P2 = H1 , T2 = HI' Y2 = 0,

which they then carrj downstream. The ideal-fluid region is coupled to the

flame through the velocity and pressure,in a manner that will now be seen in

detail for uniform temperature and composition upstream.
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p, T and Y are all constant on either side of the hydrodynamic

discontinuity. In particular there is no thermal stratification on the down-

stream side, in accordance with a common assumption mentioned in Sec. 1. The

problem is to find v and p subject to the jump conditions (1), (2), (3)

and the evolution equation (32), which may be thought of as five equations

for Y2' P2  and V in terms of the state 1. Clearly its complete analysis

would be formidable.

4. Flame Stretch.

In view of the difficulties in giving a complete analysis of a three-

dimensional flame (even when it is slowly varying), it is natural to try to

identify special characteristics that play particularly important roles in

the understanding of flame behavior. Flame speed and temperature'are

elementary examples of such characteristics that have already been identified.

A more subtle characteristic, attributed to Karlovitz (1953), is flame stretch.

In order to define this in an unambiguous fashion it is first necessary

to define a flame surface, i.e. a sheet that characterizes the location of the

reaction. For large activation energy the reaction zone is such a. surface

when viewed on the scale of the preheat zone. Lewis & von Elbe (1961, p. 225)

use the locus of inflection points of the temperature field near the burning

zone, a definition that coincides with the preceding one in the limit 8

If the flame can be viewed as a hydrodynamic discontinuity, as in Sec. ., then

the discontinuity itself is a flame surface. In all these examples and any

other for which the present discussion is meaningful, a flow velocity is

defined on each side of the surface such that v is continuous across the

surface.
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Consider a point on the flame surface which moves in it with the velocity

v I A set of such points forming an infinitesimal surface element of area

. S will, in general, deform during the motion, so that S will vary with time.

If S increases the flame is said to be stretched, whereas if S decreases

the flame experiences negative stretch and is said to be compressed. A precise

measure of the stretch is the Karlovitz number

(36) K 1 dS
S dt

Certain configurations for which stretch is an important characteristic will

be discussed in detail in Ch. X. Here we small give two elementary examples.

Consider a stationary flam e oria) which, for simplicity, is localy plane,

inclined at an angle a to the horizontal (Fig. 3). If the flame is located in

a horizontal shear flow U(y), then

1 dS sina cos U'(y).(37) S dt

Note that if a = 0 or. -f/2 there is no stretch because then the tangential

velocity does not change along the surface. The second example is an expandin5

spherical flame. If the radius is R(t), then

(38) 1 dS 2.sat = RR

Stretch of this type is discussed under somewhat lore general circumstances

in connection with the quasi-plane flames of Sec. 111.8.

In 1.ht e tr examples the stretch could be determined by inspection,

but we ncw need a general expression for it. That comes from connecting it

with stretch in a plane. Thus, as an element of the flame surface passes

through a designated point it experiences the same stretch as its projection
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on the tangent plane at that point, which is moving with velocity YV. The

plane element, however, has stretch

1 dS=V.
(39) S dt '

as is easily seen from the divergence theorem, so that this formula holds

also for the surface element.

In the first example above the flame surface is its own tangent plane at

every point and we have

2

Y]_ (U cos a, U sin cos a, 0),

from which the result (37) follows. In the second example

Y-L = (o, i z/R),

if the x-axis is taken along the normal at the point considered, and the

result (38) follows.

Stretch is a kinematical concept. For a slowly varying flame with uniform

temperature upstream it may be related. to the flame speed. The burning rate n

is then essentially the flame speed vnl + V, differing from it only by a

constant factor p1 . The basic equation (32), which now reads

(40) i dS _ dM n + 2 Tn M
S dT M -r+2T b n n

n

therefore expresses the stretch in terms of the flame speed. Note that stretch

is the same for the hydrodynamic discontinuity as for the reaction zone, but

flame speed relates to the former and not the latter.

Flame thickness is another concept that can usefully characterize a flame.

Although a plane deflagration wave is not confined to a zone of finite thickness,
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to say that it has a thickness X/c M obviously has meaning. The implication
p

is that while an infinite distance is required for the temperature to rise

from the cold value to the hot, most of the change takes place over a small

multiple of X/c M.
p

For a general flame, it is natural to define the local thickness as

X/cM1, where M is the normal mass flux. Indeed, for the slowly varying

flame the dimensionless M is the decay coefficient for T in the preheat
n

zone, as the second of formulas (26) shows, so that

(41)
n

is properly called the non-dimensional thickness. If now the elemental volume

(42) =s

generated by S is introduced, the basic equation becomes

(43) 1 dA = 2T2b- 1 4n T."

"dE *i n n

expressing what may be called voluminal stretch in terms of flame speed or

thickness. The results (40) and (43) were originally derived by Duclhiaster (1)2"

Note that the sign of b depends on the Lewis number , being positive

for j< I and negative for o).> 1. When '= 1 + 0(1/0) so that b = 0(/0),

equation (43) suggests that changes occur on the scale of t rather than t

althoglb it then falls to provide a valid description. In Sec. 8 we shall

develop the theory of near-equidiffusional flames, and fill the void.

We shall end the section with a few remarks about the contemparary

significance of flame stretch. Although the concept leads to an elegant
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description of slowly varying flames (especially when extended to volumina).

stretch, about which the literature is silent), the importance attached to it

derives from its far-ranging use as an intuitive tool in the prediction and

explanation of flame behavior (Lewis & von Elbe, 1961). This is not the

appropriate place to discuss the arguments used, which are in fact no more

than speculation. We Just mention here the fundamental claim (sometimes modified

* tin an inconsistent fashion to fit the facts) that stretching a flame causes it

to decelerate. The mathematical evidence for such a simple picture is mixed.

Certainly the present results for slowly varying flames are not favorable:

equation (32) shows that deceleration is associated with negative stretch. But

there is supportive evidence from near-equidiffusicnal flames in certain special

circumstances. These will be discussed in Ch. X.

5. ITear-Eui'iffusional Flanes.

The nonuniformity as 1 + 1 revealed by equation (32) makes it clear that

a different formulation, distinct from that for slowly varying flames, is

needed when heat and reactant diffuse at comparable rates. The essential

characteristics of such a formulation have been identified in Sec. 2, in

particular equations (l4) and (15); we shall now present a detailed mathenatical

treatment. The starting point is the system of equations (3-9) with

2 2 4
(44) A - (Y1e /2T) exp(e/To) with T, = H1,

corres!condinS to the choice (31), with 1 1, for M. Recall that the state

1 does not vary along the flame.

We seek e n asymptotic development in which spatial and temporal variations

in the flame-sheet location are 0(1). As discussed in Sec. 2, limitation of

. .. .
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the allowable variation in flame temperature then imposes the restriction

(14) and leads to the integral (15), which we now write

(45) H = T, + e-1h + o(e
-2)

outside the reaction zone. Equations (6), (8) may then be written

(46,47) p(2- + y.)-T = V 2T, p(- + y -. )h = V 2h + Xv2 T
at at

there, where p, T, v now stand for the leading terms in their own expasions

for 0 large. The same convention (including p) in the remaining equations

(4), (5), (7) completes the system. The relevant solution of equation (16)

behind the reaction zone is

(48) T = T*.

Note that the equations are essentially multi-dimensional. Non-planar er' ci.

are no longer removed to distances 0(e), where diffusions is negligible; and

the problem is correspondingly nore difficult. Note also that the actual dis -:

over which changes take place are very small, being measured on the scale C;,,:

preheat zone (typically less than 0.1 mm.).

To complete the formulation we need Jump conditions across the reaction

zone. Wnile some of these could be deduced from Sec. II.4, the gcncralizatic-:

in notation here makes it more convenient to obtain all of them ab initio.

Introduce the coordinate (10) at the point of interest and set

(49) n C.

The temperature within the flame zone is now written



(50) T = + -1 t ( ,yzt) + o(
-2)

so that

(51) p = T* [1 -0 T- t1 + 0(-2 )1;

likewise we set

.(52) Y 0 &-y ( ,y,z,t) + 0(0 2 )

(53) y Y,(ysz,t) + 6 yl(,y,z,t) + 0(0-),

and

(54) p = po( ,y,z,t) + 0(0-1

As the arguments of the various functions imply, the temperature, density,

mass fraction and velocity are continuous to leading order acros4 the flame

sheet but the pressure jumps. The goal of the reaction-zone analyZ. is

to find explicit expressions for this Jiump and those in the normal derivatives

of the other variables.

The variables y1  and t satisfy

2 2 2 2 4 2(55) a2yi/D2 = -a2tl/d2 = (Y /2T,)ylexD(tl/T,

so that, In particular, y1 + tl is a linear function of E which rtching

shows to be in fact independent of (to leading order DH/3n is zero).

Hence h is continuous across the flame sheet and we may write

(56) yl +t, = h.(y,z,t).

In the usual way, integration of the equation for tl,now yields sn

expression for the temperature gradient imnediately a,.:7 f the re.iction
9!

. . ..... . .. . . . . .. . .. .... .. . ... ... . ' -' I[ 1 . . . . .. I .... . ...
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zone (coming from atl/aI as C - which may be written

(57) [3T] = -Y exp(h*/2T)
a8n

[ ] denotes the Jump, i.e. the difference between conditions on the hot

and cold sides of the flame sheet.

We turn now to the continuity and momentum equations, and immediately note

that to leading order the former confirms the continuity of v across then

flame sheet while the latter confirms that of V]. To next order the

continuity equation yields

(v + n,*) at I  iavn
2 - + "+ .' 1+)=o

so that

V-- Vn* T0

Similarly, the nrlccmrnrcent ofthe r-.onentum equation yields

0= - -

so that

(58) 4' [ , Vn [IT,

3a,

Finally, the other cormonents of the momentum equation yield

2

so that

(60) [p] T- 1  .
an



-20-

The Jump conditions are completed by noting that

p(.- + v )H = (1 - 1 )V21 + X-1V2T

is an exact equation everywhere,so that

(61) 3h 9T

an an

In particular, we see that when the Lewis number is exactly one (X = 0) the

function h will vanish identically in the absence of inhomogeneous initial

or boundary data.

For slowly varying flames it does not matter, so far as stretch is

concerned, whether the flame surface is taken to be the hydrodynamic disconti>':

or the reaction zone since y does not change across the preheat zone. On

the other hand, flame speed differs for these two possibilities since vn

does change across the preheat zone. For near-equidiffusional flames the

stretch is different also, because of changes in y. Nevertheless, it is

natural to select the flame sheet rather than the hydrodynamic discontinuity,

which is consistent with slowly varying flames for stretch but not for speed.

The determinations of speed would be consistent if calculated relative to the

burnt gas, but that would flout long-established convention.

6. Reduction to Stefan Problems.

The problem described in Sec. 5, for the first time in full generality,

presents formidable mathematical difficulties. In general a numerical

treatment would be needed, involving the simultaneous solution of six first- or

second-order partial differential equations (some nonlinear) on each side of a

(possibly) movinp discontinrity which has to be found. Even the description
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of small perturbations of a plane flame (Sec. III.8) demands the solution of

equations with complicated variable coefficients.

These difficulties are significaritly reduced when the fluid mechanic's

is eliminated, in the spirit of Fig. 2 (Buclcaster 1979a, b). Then only

equations (46), (47) remain with p and z prescribed, the first as a

constant and the second as a solution of the continuity and momentiur' - ,_ations.

This is the constant-density approximation of See. 1.5, leading to the system

(62, 63) (-+ v *V)T V2 T, (-2- + y *Y~h V 2 h +AV 2 T

whcn the density is absorbed by the distance and time units. The accompanyin,

J~urm conditions are

(64) [_h  -X[_], = XYexp(h/2T2),

h and T being continuous across the flaiie sheet. Pn attractive fc.-ture ir

that the field equations are now linear; but we are still faced with a spati' -a1>

elliptic free-boundary problem, even for the simple case of a uniforl: flow

(65) y = (U,O,O) with U = eonst.

For siplicity, consider steady plane flow. If U is large, i.e. the

fas speed is much greater than the flame speed, then e. flame sheet wo.ild

have to be nos3t horizontal (with slope of order U ); under the riC',t

circ;n-'.-.rcy. ,, changes in the x-direction wou]d then be rmch smaller than

tho,-'. I, y--iretion. An example, discussed in detail- in Ch. v, iz th't

of a flare . to an adiabatic wall parallel to the x-axis. Under such

circumstnrccs the field equations become parabolic; for, by writing

(66) x = Ux

6 i
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in equations ( ), we obtain

(67, 68) ;T 2T , 3h 2h a 2T
X -2 ax 2 + y2

in the limit U * . Moreover, the normal n is almost vertical so that the

n-derivatives in the jump conditions (6h) may be replaced by y-derivatives.

The result is a generalized Stefan problem, readily amenable to numerical

analysis (Buckmaster 1979a). Clearly the argument is not affected in substance

if U is a function of y; the x-derivatives in equations (67), (68) acquire

coefficients depending on y, the same for each. They will form the basis of

the discussion of shear flows presented in Ch. X.

A similar reduction is possible for straining flows, i.e. flows in which

the speed varies significantly along streamlines (Bucknaster i979b). Vhen the

speed is large, the angle between the flame sheet and intersectinstreamline

is small. Then changes along the streamlines occur over a characteristic

length in the flow field, ihercas changes nor.-mal to the occur over a flne

thickness in the neighborhood of the sheet. lf the ratio of these lengths

is large, a parabolic description results.

To see this in detail, consider a curvilinear system of coordinates (sn)

in which s measures distance along one of the intersecting stream'lines and n

distance from it. The (ivergenceless) velocity field is supposed to have the folm

(69) v = U (a,v) with a = s/U, v = n/U,

so that IT characterizes both the magnitude of v and the distance over w±nc

it varies. Letting U -* co tives a distinguished l-mit -n.;hich .y is O(1).

The combustion field is described in trrms of the variablcs u and n

so that, in the limit
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S= Uqo , v = -nq; with qo= qs(ao)

is the velocity field experienced by the flame. Equations (46),(47) therefore

simplify to

(70) (qo0  - nq' -L)T = --2T

an

(71) (qo -- n qo -L)h = L
-

h +X 22 T
an2  an2

These are the basis of the discussion of straining flows in Ch. X. The

previous equations (67), (68) are, of course, obtained on setting qo 1,

a= X, n y.
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